Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules

Ying Jiang1,2, Qing Huan1,3, Laura Fabris4, Guillermo C. Bazan4 and Wilson Ho1,5*

One of the key challenges in chemistry is to break and form bonds selectively in complex organic molecules that possess a range of different functional groups. To do this at the single-molecule level not only provides an opportunity to create custom nanoscale devices, but offers opportunities for the in-depth study of how the molecular electronic structure changes in individual reactions. Here we use a scanning tunnelling microscope (STM) to induce a sequence of targeted bond dissociation and formation steps in single thiol-based π-conjugated molecules adsorbed on a NiAl(110) surface. Furthermore, the electronic resonances of the resulting species were measured by spatially resolved electronic spectroscopy at each reaction step. Specifically, the STM was used to cleave individual acetyl groups and to form Au–S bonds by manipulating single Au atoms. A detailed understanding of the Au–S bond and its non-local influence is fundamentally important for determining the electron transport in thiol-based molecular junctions.

Chemical reactions involve the dissociation, rearrangement and formation of individual bonds. An overarching aim of much of chemistry is to break and form specific bonds selectively, namely bond-selective chemistry1,2. The scanning tunnelling microscope (STM) has proved to be an ideal tool to induce and view bond-selective chemistry at the single-molecule level, because of the atomic-scale localization and tunability of the energy of the tunnelling electrons3,4. Most of the studies on bond-selective chemistry to date addressed small molecules5–15. However, the feasibility of initiating a bond-specific reaction within a complex molecule with functional groups is more relevant to molecular nanotechnology, in areas such as molecular electronics, organic solar cells and nanomachines. Furthermore, there are very limited experimental studies on changes in the molecular electronic structure associated with bond dissociation and formation, which provide crucial evidence for orbital hybridization in chemical transformations16.

Molecules functionalized with thiols are adopted widely for the study of molecular electron transport17. However, the measured conductance of thiol-based molecular junctions is distributed over a wide range of values and poorly reproduced by theory18. The main reason is the lack of experimental insight into the microscopic geometry of the Au–S bond and the corresponding electronic structure of molecular junctions19,20. Therefore, to control the geometry of the Au–S bond at the single-bond level and to probe simultaneously the electronic structure of the molecular junction is of fundamental importance in the field of molecular electronics21.

Here, we demonstrate the ability to induce a sequence of target-selective bond dissociation and formation steps in a relatively large thiol-based π-conjugated molecule adsorbed on a NiAl(110) surface. Combining the spatial resolution of the STM and the energy tunability of tunnelling electrons for resonant electronic excitation22–26, at each reaction step we were able to abstract different functional groups selectively from the molecule and monitor the evolution of the molecular electronic structure by spatially resolved electronic spectroscopy. The bond-selective dissociations exposed the sulfur functional groups to activate the formation of the Au–S bonds by manipulating and attaching the single gold atoms to the sulfur atoms at the two ends of the molecule. The details of Au–S bond formation and its influence on the electronic structure of the molecule were determined by the STM. These results underlie the understanding of electron transport in thiol-based molecular junctions19,21.

Results and discussion. We carried out the bond-selective chemistry in 1,4-bis(4-acyclothio)styryl)benzene (DSB-2S-2Ac) adsorbed on a NiAl(110) surface at 12 K. Originally, DSB-2S-2Ac was designed to contain a π-delocalized electronic structure across the distyrylbenzene (DSB) framework and functional groups (sulfur and acetyl) specific for covalent bond formation to metal surfaces, such as gold22. The NiAl(110) surface has pseudogaps in the projected bulk band structure in parts of the Brillouin zone, which lead to the depletion of the local density of states (DOS) between 1.0 and 2.5 eV above the Fermi level23. Therefore, the hybridization between the molecular resonances and substrate states is reduced significantly in the energy-gap region, which makes it possible to monitor the molecular resonances at each step of the reaction by measuring the energetic shifts and imaging their spatial distributions.

Figure 1a shows schematic models for two rotational isomers of DSB-2S-2Ac (I and II, respectively), which can be distinguished by their different symmetries. DSB-2S-2Ac can either be centrosymmetric (I) or have a mirror plane that bisects the central aromatic ring (II). As shown in the high-resolution STM topographic images (Fig. 1b,c), DSB-2S-2Ac (I) exhibits a ‘kink’ in the middle, but DSB-2S-2Ac (II) has a ‘belly’ instead. These features arise from the π-orbitals of the DSB framework27. The enhanced apparent heights at the ends of the molecules suggest that DSB-2S-2Ac adsorbs on the NiAl(110) surface through the lone pair of electrons.
on the sulfur atom, with the S–Ac bond pointing partially away from the surface (see the ball-and-stick models in Fig. 1b,c). Interestingly, the terminal protrusion of the molecule consists of two distinct lobes with one larger than the other. When the schematic models of DSB-2S-2Ac are superimposed on the corresponding STM topographies, the two lobes coincide neatly with the oxygen atom and the methyl in the acetyl group. The larger lobes (or smaller ones) always point in the opposite direction in DSB-2S-2Ac (I) or to the same side in DSB-2S-2Ac (II) so that the symmetries of the DSB molecules are preserved.

Single-bond dissociation sequence. The functional groups in DSB-2S-2Ac can be abstracted one after the other by injecting electrons of different energies from the STM tip at precise locations for bond-breaking within the molecule (Fig. 1d). To achieve the controlled bond rupture and determine precisely the threshold bias for the dissociation, we slowly ramped up the sample bias under the constant current mode (for details see Fig. 1e and Methods). In dissociation, we slowly ramped up the sample bias under the constant current of 1 nA; step 2, the tip height encounters a sudden jump on dissociation of the acetyl group; step 3, the bias is immediately increased to 1.58 V, which can be deconvoluted into two Gaussian peaks of 1.6 V and 2.2 V, respectively. These voltages are lower than the threshold voltage for breaking C–H and C–C bonds. It is not until raising the bias above 3.0 V that dehydrogenation or even decomposition can occur (Supplementary Fig. S2), in agreement with the dissociation of benzene and pyridine molecules adsorbed on Cu(100) (ref. 29).

The influence of the different functional groups on the electronic structure of the molecule can be revealed by studying the energetic shifts and the spatial distributions of the molecular resonances at each reaction step. Figure 2 displays the dI/dV images (middle column) and spatially resolved dI/dV spectra (right column) of the molecules terminated with different functional groups. The dI/dV spectra were taken at four key locations on the molecule, indicated as 1, 2, 3 and 4 in the dI/dV images (middle column) and spatially resolved dI/dV spectra (right column) of the molecules terminated with different functional groups. The dI/dV spectra were taken at four key locations on the molecule, indicated as 1, 2, 3 and 4 in the dI/dV images.

The dI/dV spectrum of the intact DSB-2S-2Ac molecule shows a broad peak, which can be deconvoluted into two Gaussian peaks centred around 1.58 V and 1.73 V (right column, Fig. 2a). The intensity of the 1.73 V peak increases significantly from the middle (1 and 2) to the ends (3 and 4) of the molecule. The dI/dV image obtained at the 1.58 V peak exhibits a delocalized orbital that spans the entire molecule (middle column, Fig. 2a). In contrast, the state at 1.73 V is relatively localized in four disconnected lobes at the periphery of the molecule, which correspond to the locations of the methyl groups and the oxygen atoms in the acetyl groups (Supplementary Fig. S3). This suggests that the lower-energy peak originates from the intrinsic π-orbitals of the conjugated DSB fragment, although the higher-energy one may result from the acetyl-derived resonance.
In the acetyl-free molecule (DSB-2S), the DSB-derived state blue shifts to 1.75 V, and a new resonance state appears at 2.13 V (right column, Fig. 2b). The site-dependent dI/dV spectra indicate that the 2.13 V peak is localized at the ends of the molecule, which suggests that they originate from sulfur-derived states. The spatial imaging of the 1.75 V peak reveals that the π-orbitals of the molecule are suppressed dramatically at the ends where the acetyl groups were dissociated (arrows in the middle column of Fig. 2b). The absence of the π-electrons at the ends can be attributed to the strong σ-bonding between S 3p and C 2p, which tends to reduce the π-coupling within the conjugated molecule. The attachment of the acetyl group to the sulfur atom can weaken the adjacent S–C σ-bond and thus facilitate the π-electrons spanning over the whole molecule.

Scissions of both sulfur atoms from DSB-2S result in an activated ‘DSB’, namely the DSB molecule with two terminal hydrogen atoms missing (left column, Fig. 2c). The site-dependent spectra exhibit the absence of the sulfur-derived resonance and a single peak at 1.90 V that corresponds to the π-resonance of ‘DSB’ (right column, Fig. 2c). Compared to DSB-2S, the π-orbital of ‘DSB’ partially recovers at the ends (arrows in the middle column of Fig. 2b and Fig. 2c), but is still less pronounced than that of the intact DSB (see Supplementary Fig. S4). This suggests that the ‘DSB’ molecule still has considerable π-bonding with the substrate through the unsaturated C atoms.

The evolution of the π-resonance and the states derived from the functional groups are summarized quantitatively in Supplementary Fig. S5. The threshold biases for detaching the acetyl group (1.80 ± 0.20 V) and the sulfur atom (2.30 ± 0.15 V) correlate with the energies of Ac- and S-derived states, respectively. Therefore, the dissociations of the acetyl group and sulfur atom are associated with resonant electronic excitations, namely the transient attachment of the electrons to the Ac- and S-derived resonances. The feasibility of submolecular control of bond-selective dissociation relies on the spatial localization and the energetic separation of the Ac- and S-derived states within the molecule.

Single-bond formation sequence. For the bond formation, we chose to investigate the Au–S interaction, which plays a decisive role in the fabrication of self-assembled monolayers and studies of the charge transconductance across single molecules. The images in Fig. 3a–f illustrate a typical Au–S bond-forming sequence. An intact DSB-2S-2Ac (II) was first activated by selectively dissociating the two acetyl groups to expose the sulfur anchoring atoms (arrows in Fig. 3a,b). Two single gold atoms (AuL and AuR in Fig. 3a) were then successively manipulated to the proximity of the exposed sulfur atoms (S_L and S_R in Fig. 3b) along pre-designed pathways (dotted lines in Fig. 3b,c). To explore the role of bonding geometry, these two gold atoms were attached to the molecule in different orientations. After bringing the reactants together, the gold atoms may not readily form strong chemical bonds with the sulfur atoms because of the higher energy barrier needed for bond formation than that for...
It does not interact with the adjacent molecule and the Au atoms. Set point unknown impurity on the surface and can move around during the scanning. The round protrusion below the molecule in (which the Au atoms were manipulated to the proximity of the molecule. sulfur atoms. The dotted lines in (Fig. 3g), which is the most important characteristic of a covalent bond. In contrast, Au \(_a\) has less overlap with the molecule and shows a nodal structure between the Au \(_a\) orbital and the \(\pi\)-electrons, which suggests that the hybridization between Au \(_a\) and S\(_h\) is localized.

The \(dI/dV\) spectra taken at five key locations (denoted as 1, 2, 3, 4 and 5 in Fig. 4a) on the DSB-2S-Au complex are presented in Fig. 4c–e. Owing to the localization of the states, the spectra obtained at 1, 2 and 3, and 4 and 5 mainly probe the DSB-, S- and Au-derived states, respectively. The spectra of DSB-2S and of the isolated Au atoms before the association are shown for comparison. The isolated Au atom adsorbed on NiAl(110) exhibits a single resonance peak at +2.09 V, which originates from the hybridization of Au 6s,p and NiAl states (‘Free Au’ in Fig. 4e)\(^{28}\). As the energy of the Au resonance can be affected by the adsorption site on the NiAl(110) surface, we always compare the Au atoms bonded to the DSB-2S and DSB-2S-Au with the isolated Au atom adsorbed at the same site (Supplementary Fig. S7). The 0.25 eV red shift of the Au\(_a\) state (‘5’ in Fig. 4e) and the 0.1 eV red shift of the S\(_h\) state (‘3’ in Fig. 4d) point to the formation of a strong covalent bond between Au\(_a\) and S\(_h\) that arises from the hybridization between the unpaired 3p electron of S\(_h\) and the sp electron of Au\(_a\) (ref. 34). In contrast, the Au\(_b\) state shifts to slightly higher energy by about 50 meV (‘4’ in Fig. 4e), which suggests that Au\(_b\) and S\(_b\) form a weak coordinate bond through the lone-pair electrons on S\(_b\) (ref. 35).

The mechanism of the bond formation is depicted schematically in Fig. 4b. The orientations of the unpaired electron and lone-pair electrons of the S atoms follow the symmetry of the DSB framework (mirror plane bisecting the internal aromatic ring). The formation of the covalent bond between the unpaired electrons on S\(_h\) and Au\(_a\) leads to the charge transfer from the Au\(_a\) to the molecule and the red shift of the Au\(_a\) state. The electron transfer into the lowest unoccupied DSB state of the molecule lowers its energy towards the Fermi level, which is consistent with the observed 0.15 eV red shift of the DSB state (Fig. 4c). In the coordinate bond, the lone-pair electrons on S\(_b\) are shared with Au\(_b\), which results in the blue shift of the Au state on Au–S bond formation. In addition, the delocalization of the Au\(_a\) state and the localization of the Au\(_a\) state (as shown in Fig. 3g) provide further evidence for the formation of the covalent bond and the coordinate bond, respectively\(^{35}\). These observations demonstrate the possibility of selectively forming specific types of bonds by controlling the Au–S bonding geometry at the atomic scale.

Although the spatial distribution of the DSB-derived state remains almost unchanged in the middle part of the molecule on Au–S bond formation (Fig. 3g), the \(dI/dV\) spectrum is altered in terms of the energetic red shift (about 0.15 eV), the intensity reduction and the width broadening (Fig. 4c). These observations have important implications for electron transport through a single molecule that is in contact with metal leads\(^{36}\). The 0.15 eV energetic shift of the molecular resonance is prominent, as a 0.1 eV shift can change the conductance by nearly a factor of five (ref. 19). The reduced intensity and the broadened width of the molecular resonance reflect the shortened lifetime of the electron in the molecule, which may affect the extent of vibronic coupling within the molecule\(^{36}\). The changes in the electronic states of the molecule

Figure 3 | Formation sequence of the DSB-2S-2Au complex. a–d. Manipulation sequence for attaching two gold atoms to a DSB-2S (II) molecule. The arrows in (a) indicate the acetyl groups and those in (b) the sulfur atoms. The dotted lines in (b) and (c) depict the trajectories along which the Au atoms were manipulated to the proximity of the molecule. The round protrusion below the molecule in (a) to (d) corresponds to an unknown impurity on the surface and can move around during the scanning. It does not interact with the adjacent molecule and the Au atoms. Set point unknown impurity on the surface and can move around during the scanning. The round protrusion below the molecule in (a) to (d) corresponds to an unknown impurity on the surface and can move around during the scanning. The round protrusion below the molecule in (a) to (d) corresponds to an unknown impurity on the surface and can move around during the scanning. The round protrusion below the molecule in (a) to (d) corresponds to an unknown impurity on the surface and can move around during the scanning.

Figure 4 | Spectra of the DSB-2S-2Au complex. a, b. Zoom-in STM topographies before and after the formation of the Au\(_L\)–S\(_L\) covalent bond. The asterisk in (e) indicates the location where 2.2 eV electrons were injected with the STM tip to form the Au\(_L\)–S\(_L\) covalent bond (‘nanowelding’). The fuzzy feature below the asterisk in (e) arises from the instability of the molecule under the perturbation of the tip before the formation of the covalent bond. Set point for topographies: \(V = 1.0 \text{ V}, J = 50 \text{ pA}\). The scale bar in (b) also relates to (e). f. d\textsubscript{I}/d\textsubscript{V} image of the DSB-2S-2Au complex. Imaging conditions: \(V = 1.6 \text{ V}, J = 50 \text{ pA}\). The dotted circle highlights the shared orbital structure in the Au\(_L\)–S\(_L\) covalent bond between the Au atom and the molecule. h. Scaled schematic model (x1.8) of the DSB-2S-2Au complex.

Figure 5 | Diffusion of the DSB-2S-2Au complex. a. Single resonance peak at 1.0 V. b. Single resonance peak at 1.0 V. c. Single resonance peak at 1.0 V. d. Single resonance peak at 1.0 V. e. Single resonance peak at 1.0 V. f. Single resonance peak at 1.0 V. g. Single resonance peak at 1.0 V. h. Single resonance peak at 1.0 V.

mean that the formation of the Au–S bond is expected to influence previously observed resonant electron transport, molecular charging and conformational change of the molecule.

For comparison, we performed the same experiments on the DSB-2S-2Ac (isomer I). The results of the bond formation for isomer I followed those for isomer II. The spectroscopy and imaging of a DSB-2S-2Au complex (isomer I), in which both Au atoms formed covalent bonds with the S atoms, are shown in Supplementary Fig. S8.

Conclusions
We systematically investigated single-bond dissociation and formation in a functionalized π-conjugated molecule. The selective dissociation was realized by locally injecting the energy-tunable electrons into the corresponding resonant molecular states. The influence of the different functional groups on the energetic positions and spatial distributions of the molecular resonance was determined by studying the evolution of the electronic structure of single molecules. In addition to bond-selected dissociation, we further investigated the Au–S interaction by manipulating single gold atoms to form covalent and coordinate bonds between the Au atoms and the S-activated molecule. The modifications of the molecular resonance on the Au–S bond formation, the directionality of the Au–S bond and the extent of the Au–S coupling were revealed and may clarify the long-standing discrepancy of the electron transport in thiol-based molecular junctions. This work also opens up the possibility of measuring electron transport, controlled with atomic precision, through a single thiol-based molecule in an electrode–molecule contact geometry.

Methods
The experiments were carried out with a home-built, ultra-high vacuum, low-temperature STM operated at 12 K (ref. 37), with the base pressure better than 2.0 × 10⁻¹¹ torr. The NiAl(110) single crystal was cleaned by repeated cycles of Ne⁺ sputtering and annealing. Then, individual DSB-2S-2Ac molecules and gold atoms were evaporated thermally in situ onto the surface at 12 K. All the STM measurements were performed at 12 K with silver tips, which were cleaned by three cycles of annealing and sputtering before the experiments, and further by controlled field-emission and tip-crash procedures on the surface. Bias voltage refers to the sample voltage with respect to the tip. All the STM topographic images were obtained in the constant current mode. For scanning tunnelling spectroscopy measurements, a modulation frequency of 243 Hz and amplitude of 10 mV were adopted in the lock-in detection of the differential conductance spectra and images. The manipulation of the Au atoms was realized in the so-called ‘pulling mode’. A typical condition for the manipulation in our experiment was with a sample bias of 7 mV and a tunnelling current of 60 nA. To achieve bond-selective dissociation, the STM tip was held at a fixed position over a selected part of the molecule (indicated by the asterisks in Fig. 1f), followed by raising the tunnelling current to 1 nA. Then the sample bias was gradually ramped up from the imaging conditions (typically 1 V) with the feedback on. To avoid any further additional changes in the molecule, the bias was decreased quickly back to the imaging condition on detection of a sudden jump in the tip height associated with the bond dissociation (Fig. 1e).

Received 8 May 2012; accepted 26 September 2012; published online 11 November 2012

References

