

北京大学量子材料科学中心

International Center for Quantum Materials, PKU

Seminar

Strongly correlated systems on highly frustrated lattices: From Heisenberg spins to Hubbard Electrons

Johannes Richter

Institut für Theoretische Physik, Universität Magdeburg, Germany

Time: 4:00pm, Feb 27, 2014 (Thursday) 时间: 2014年2月27日 (周四) 下午4:00 Venue: Conference Room 607, Science Building 5 地点: 理科五号楼607会议室

Abstract

Frustration in magnetic and electronic systems may lead to dispersionless (flat) one-particle bands which have a strong influence on the many-body physics of strongly correlated quantum systems. Thus, flat-band systems are receiving a great deal of attention right now, in particular with view of realizing new many-body phases there. In my talk I will give an overview on the low-temperature physics of flat-band Heisenberg spin systems and Hubbard electrons.

Interestingly for a large variety of such strongly correlated quantum systems a class of exact manybody eigenstates can be constructed. Examples are the 1D sawtooth and kagomé chains, the 2D kagomé and checkerboard lattices, and the 3D pyrochlore lattice. The exact many-particle eigenstates consist of independent magnons (electrons) localized on finite areas of the lattice and become ground states for certain values of total magnetization(electron concentrations).

The correlated quantum systems having localized eigenstates exhibit a highly degenerate groundstate manifold at the saturation field h_{sat} (at a characteristic value of the chemical potential μ_0) for magnons (electrons). The degeneracy grows exponentially with the system size and leads to a finite residual entropy. By mapping the localized magnon (electron) degrees of freedom onto a classical hard-core lattice gas one may find explicit analytical expressions for the low-temperature thermodynamics in the vicinity of h_{sat} (μ_0). Though the scenario of localized eigenstates is similar for spin and electron systems, the different statistics of spins and electrons leads to different construction rules for the localized eigenstates and, as a result, to a different hard-core lattice gas description. For electrons the scenario of localized eigenstates is related to the so-called flat-band ferromagnetism. For spin systems the localized many-body states lead to some spectacular features in strong magnetic fields, such as zero-temperature magnetization plateaus and jumps, magnetic-field driven spin-Peierls lattice instabilities, an extra peak in the specific heat at low temperatures as well as to an enhanced magnetocaloric effect.

About the Speaker

Johannes Richter Education: 1958 - 1970: Primary and Secondary School in Dresden 1970 - 1974: Study of Physics at the Technical University Dresden Scientific degrees: 1977: PhD (Dr.rer.nat.) from Technical University Dresden Thesis: 'Band theory of amorphous ferromagnets' 1986: Habilitation (Dr.rer.nat.habil.) from Technical University Dresden Thesis: 'Theoretical investigations of electric and magnetic properties of disordered solids'

http://icqm.pku.edu.cn/

Enquiry: xcxie@pl