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1. Introduction
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First I’d give a brief introduction about the background.


* Ordinary Hall effect (1879)

Pxy = RoB

e Anomalous Hall effect

(188081881) //l —

Pxy = RoB+ pan
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Hall discovered in 1879 that there was a transverse voltage  if applying the electrical and magnetic fields this way in metals like Cu or Au. Just one year later he realized in Fe, Ni and Co that there was another much bigger term in these ferromagnetic metals, besides the ordinary one. Unlike the simple Lorenz force responsible for the ordinary Hall effect, the mechanism of the AHE is still under debate after 130 years. The key issue is to establish the proper scaling between rho(ah) vs rho(xx) both theoretically and experimentally.
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While for example in extra-pure Ni at low temperature (around 4K) a linear scaling was found.
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However in some other materials such as Co and MnGe alloy a combination between the two were declared.
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Lastly but presumably the most puzzling scaling with non-integer scaling were observed, such as in the case of normal single crystal Ni. The scaling is strongly temperature dependent. No one has ever understood such kind of strange and nontrivial behavior.
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(2) Skew-scattering (Smit, 1955)




Question 1:
Intrinsic and Extrinsic ?
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So experimentally the key issues are also twofold, i.e., what’s the proper scaling of the AHE and how to disentangle the intrinsic and extrinsic mechanisms.


pah — apXX +bpfx
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a variety of mechanisms have been
proposed to explain the origin of the coefficient R;. These
include skew scattering by impurities and phonons, and
the “side jump” mechanism [1|. In early work it was
also proposed that the effect will arise in the absence of
periodicity-breaking perturbations [2], but this is generally
believed not to be correct [1].




/Oah — a/Oxx + bpfx
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) It is now accepted® that two mechanisms are
responsible for the anomalous Hall effect: the skew-
Scatterin§ proposed by Smit'* and the side-jump proposed by
Berger.'



Anomalous Hall effect There is a term in the Hall resistivity of a ferromag-
net when the field is applied in the z-direction. perpendicular to the plane of
the film, in addition to the normal Hall effect (3.53). This is the anomalous Hall
effect, which varies with the magnitude of the magnetization M :

O = Uo(RyH 4+ R.M). (

Ly

.83)

The anomalous Hall effect is yet another consequence of spin-orbit coupling.
The symmetry of the radial component of the Lorentz force j x B which
produces the normal Hall effect is the same as the symmetry of the spin-orbit
interaction L - Ssince L = r x p, pox j, S & juyM.

-

[n a ferromagnet the anomalous Hall effect varies as

he macroscopic average
magnetization. Generall 1 vary as o, and as o° ,
nisms. Deviation of the
electron trajectories due to spin-orbit interaction is known as skew scattering.

writing o,,, = iy RH’, the Hall angle ¢, is defined as o,, /0, .. Thus ¢, =

which are associated w

@+ Po,.;aisthacts = yangle. The second term is often larger. It is
associated with .~ , - mechanism due to impurity scattering. If § = 0.1

nm is the side jump, the Hall angle here is §/, which is proportional to g,
Here A 1s the mean free path.
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On the theoretical front, the adoption of the Berry-phase
concepts has established a link between the AHE and the topological nature of the Hall currents. On
the experimental front, new experimental studies of the AHE in transition metals, transition-metal
oxides, spinels, pyrochlores. and metallic dilute magnetic semiconductors have established systematic
trends. These two developments, in concert with first-principles electronic structure calculations,
strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic
ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the
Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect
crystal.



Question 2:

Temperature Dependence in the AHE-NI ?
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So experimentally the key issues are also twofold, i.e., what’s the proper scaling of the AHE and how to disentangle the intrinsic and extrinsic mechanisms.
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Lastly but presumably the most puzzling scaling with non-integer scaling were observed, such as in the case of normal single crystal Ni. The scaling is strongly temperature dependent. No one has ever understood such kind of strange and nontrivial behavior.


Transition metals
Anomalous Hall Conductivity (Qcm)!

Theory | Exp
bcce Fe 752 1032
hcp Co 477 480
fcc Ni -2203 -646

X. J. Wang, et.al. Phys. Rev. B 76, 195109 (2007)
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两者之间存在很大的差距.
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Usually the rho(xx) is varied two ways, either by temperature or impurity. But the impurity approach is not a appropriate one in this case because as mentioned earlier it would change the intrinsic as well as the extrinsic mechanism. In this experiment we avoid the impurity approach by adopting the ultrathin film approach, as shown in the figure.
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Now we propose a different scaling in contrast to the routinely used.  Then it is very critical to check which one works better for the raw data without doing any modeling or curve fitting.
For the old and new one, a different linear plot would be expected.
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When we plot sigma(ah) as a function of sigma(xx) for different films, it’s very interesting to observe that they start at very different places at low temperature but merge to about the same point which is exactly the value Dheer obtained in bulk Fe whisker sample. Therefore we have now strong reason to believe that this is the intrinsic contribution for the AHE, which is independent of impurity scattering, i.e., the long sought anomalous velocity term proposed by KL!
The naïve picture to explain this is all the extrinsic scattering centers would become kind of fuzzy in high temperature while the band structure contribution is more robust against the kT change.
In addition,  we found the extrinsic contribution is negative for bulk Fe at low temperature.
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When we plot sigma(ah) as a function of sigma(xx) for different films, it’s very interesting to observe that they start at very different places at low temperature but merge to about the same point which is exactly the value Dheer obtained in bulk Fe whisker sample. Therefore we have now strong reason to believe that this is the intrinsic contribution for the AHE, which is independent of impurity scattering, i.e., the long sought anomalous velocity term proposed by KL!
The naïve picture to explain this is all the extrinsic scattering centers would become kind of fuzzy in high temperature while the band structure contribution is more robust against the kT change.
In addition,  we found the extrinsic contribution is negative for bulk Fe at low temperature.
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我们在比较平整的MgO(001)衬底上外延生长了一系列厚度的Ni薄膜,高能电子衍射图案表明薄膜具有良好的单晶质量. 在薄膜表面再覆盖一层5nm左右的MgO作为保护.这样我们就可以将样品拿出真空腔制作Hall bar,然后进行电阻率和霍尔电阻率的测量.
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dependent magneto-crystalline anisotropy
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MAGNETIC ANISOTROF™™ 7" NICKEL
E. I. KONDORSKII and E. STRAUBE

Moscow State University
Submitted February 9, 1972
Zh. Eksp. Teor. Fiz. 63, 3566-365 (July, 1972)

A theory of magnetic anisotropy of nickel is developed in which its band structure and shape of the
Fermi surface are taken into account. It is shown that the theoretical values of the magnetic aniso-
tropy constant at absolute zero temperature are in satisfactory agreement with the experimental
value for the helium temperature range. It is shown that the main contribution to the anisotropic

part of the energy (AE) is due to the Brillouin band regions which would contain degenerate or quasi-
degenerate states in the absence of spin-orbit interaction. It is necessary in this case that the Fermi
levels be located within one or several, but not all, bands with degenerate or quasidegenerate states.
The contributions to the AE from other regions of the Brillouin band are smaller by several orders of
magnitude than the main contributions mentioned above,
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Band structure of nickel: Spin-orbit coupling, the Fermi surface,
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TABLE I. Energy levels at symmetry points (Ry).
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5 —0.4304 (T4t)  —0.2869 (X;1)  —0.2859 (X,t)  —0.3803 (Lgt)  —0.4389 (Wyd)  —0.4428 (Wyd)  —0.4090 (K5t)  —0.4091 (K,t)
4 -0.4338 (T4t)  —0.5179 (X;4)  —0.5178 (X;4)  -0.4263 (Lyt)  —0.4766 (Wj})  —0.4736 (W/4)  —0.4837 (K4)  —0.4836 (K 4)
3 —0.4365 (T4t)  —0.5398 (X;4)  —0.5398 (X;})  —0.4330 (Lyt)  —0.4815 (Wyt)  —0.4823 (Wyt)  —0.4929 (K,4)  =0.4929 (K4)
2 ~0.9144 (Ty4) ~0.5619 (X;1)  —0.5619 (X;t)  —0.5873 (L,+)  —0.4833 (Wyt)  —0.4848 (Wyt)  —0.5219 (K1)  —0.5219 (K1)
1 —0.9155 (Tyt) ~0.5775 (X;t)  —0.5774 (X,t)  —0.6178 (L,1)  —0.5183 (WJt)  —0.5182 (W)  —0.5359 (K,t)  —0.5359 (K,t)
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| This rather
strong temperature dependence is also due to the near

degeneracies since the small energy scale is relevant to
the SHC there.



3. Conclusions




Intrinsic and Extrinsic in the AHE

IOah — O[IOXXO +18pr0 T b(T)pfx

Extrinsic Intrinsic

Y. Tian, L. Ye, X.F. Jin, Phys. Rev. Lett., 103, 087206 (2009)

L. Ye, Y. Tian, X.F. Jin, D. Xiao, arXiv: 1105.5664
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演示文稿备注
So experimentally the key issues are also twofold, i.e., what’s the proper scaling of the AHE and how to disentangle the intrinsic and extrinsic mechanisms.
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