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- HgTe/CdTe bandstructure, quantum spin Hall effect
- HgTe as a Dirac system
- Dirac surface states of strained bulk HgTe
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Configurations would be equivalent in quantum adiabatic regime

A. Roth et al., Science 325, 294 (2009).
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E.M. Hankiewicz et al ., PRB 70, R241301 (2004)
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— Suppress non-local QSHE using long leads or narrow wires
— Intrinsic metallic SHE only shows up for holes: larger spin-orbit

— Amplitude in agreement with modeling (E. Hankiewicz, J. Sinova)



Julius-Maximilians-

UNIVERSITAT

0
o
—
N
o

(b)

400

100 -

2,0

Vg (V)

Vg V)

0,0

-1,0

1,0 1,5 2,0

0,5

0,0

15 2,0

1.0

0,5

1,5

Vg* (V)

Vg™ (V)
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B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)
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For well thickness d=6.3 nm, the gap closes,
especially the conductionband shows a linear dispersion: single Dirac cone
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Zero mode spin splitting allows to select sample at d..
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B. Buttner et al., Nature Physics doi:10.1038/nphys1914

Large g-factor (g=55) responsible for spin slitting already at low fields.
Hall quantization reflects single valley character of the band structure:
a HgTe quantum well at d=6.3 nm is half-graphene.
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B. Blittner et al., Nature Physics doi:10.1038/nphys1914

Color coded: gate voltage derivative of longitudinal resistivity.
Fits: left — 8-band Kane model, right — Dirac Hamiltonian
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Peak width and mobilities comparable with/better than free standing graphene
Scattering mechanisms: probably mass fluctuations + Coulomb (fit is Kubo model)
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B. Biittner et al.,, Phys. Rev. Lett. 106, 076802 (2011).

Originally increase in mobility from reduced impurity scattering,

then changeover to behavior due to well width (Dirac mass) fluctuations.
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B. Bittner et al., Phys. Rev. Lett. 106, 076802 (2011).

Modeling by Grigory Tkachov and Ewelina Hankiewicz:
Mass and disorder induce backscattering of Dirac fermions.
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Dirac Surface States
on
strained bulk HgTe
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C. Brine et al., Phys. Rev. Lett. 106, 126803 (2011).
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Phys. Rev. Lett. 106, 126803 (2011).
@ 20 mK: bulk conductivity almost frozen out - Surface state mobility ca. 35000 cm?/Vs
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@ 20 mK: same data, plotted as conductivity
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C. Brune et al., Phys. Rev. Lett. 106, 126803 (2011).
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Red and blue lines : DOS for each of the Dirac-cones with the corresponding fixed 2D-density,

Green line: the sum of the blue and red lines
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