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Overview

- HgTe/CdTe bandstructure, quantum spin Hall effect
- HgTe as a Dirac system
- Dirac surface states of strained bulk HgTe



band structure

D.J. Chadi et al. PRB, 3058 (1972)
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Bandstructure HgTe
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B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)



QSHE, Simplified Picture
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Multi-Terminal Probe
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Configurations would be equivalent in quantum adiabatic regime
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Multi-Terminal Measurements

A. Roth et al., Science 325, 294 (2009).



0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

 

 
R

 (k


)

V* (V)

I: 1-4
V: 2-3

1

3

2

4

R14,23=1/4 h/e2

R14,14=3/4 h/e2

Non-Local data on H-bar

A. Roth et al., Science 325, 294 (2009).



H-bar for detection 
of Spin-Hall-Effect

(electrical detection through inverse SHE)

E.M. Hankiewicz et al ., PRB 70, R241301 (2004) 
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– Suppress non-local QSHE using long leads or narrow wires 

– Intrinsic metallic SHE only shows up for holes: larger spin-orbit

– Amplitude in agreement with modeling (E. Hankiewicz, J. Sinova)

H-bar experiments

C. Brüne et al., 
Nature Physics 6, 
448 (2010).



-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0
0

100

200

300

400

500

 

R
21

,3
6 

(
)

Vg* (V)

 

 

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0
0

100

200

300

400

500
 

 

R
36

,2
1 

(
)

Vg* (V)
-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0

0,0

0,5

1,0

1,5

2,0

 

R
45

,2
1 

 (k


)

Vg* (V)

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6
 

R
21

,4
5 

(k


)

Vg* (V)

 

Q2197(a)

p-cond. insul. n-cond.

p-cond. insul. n-cond.

p-cond. insul. n-cond.

Q2198(b)

p-cond. insul. n-cond.

I

V

I

V

I

V

I

V

C. Brüne et al., Nature Physics 6, 448 (2010).





Bandstructure HgTe
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Dispersion at d=dc is Dirac-like

For well thickness d=6.3 nm, the gap closes,
especially the conductionband shows a linear dispersion: single Dirac cone



Zero mode dispersion

Zero mode spin splitting allows to select sample at dc.

B. Büttner et al., Nature Physics doi:10.1038/nphys1914



Large g-factor (g=55) responsible for spin slitting already at low fields.
Hall quantization reflects single valley character of the band structure:
a HgTe quantum well at d=6.3 nm is half-graphene.

B. Büttner et al., Nature Physics doi:10.1038/nphys1914

Quantum Hall effect shows 
Berry phase



Landau-fan

Color coded: gate voltage derivative of longitudinal resistivity.
Fits: left – 8-band Kane model, right – Dirac Hamiltonian

B. Büttner et al., Nature Physics doi:10.1038/nphys1914



Dirac peak at B=0

Peak width and mobilities comparable with/better than free standing graphene
Scattering mechanisms: probably mass fluctuations + Coulomb (fit is Kubo model)



Mobility for finite Dirac mass

B. Büttner et al.,  Phys. Rev. Lett. 106, 076802 (2011).

Originally increase in mobility from reduced impurity scattering, 
then changeover to behavior due to well width (Dirac mass) fluctuations.



Mobility for finite Dirac mass

B. Büttner et al., Phys. Rev. Lett. 106, 076802 (2011).

Modeling by Grigory Tkachov and Ewelina Hankiewicz:
Mass and disorder induce backscattering of Dirac fermions.





Bulk HgTe as a 3-D 
Topological ‚Insulator‘ 
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70 nm layer on CdTe substrate:
coherent strain opens gap
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Bulk HgTe as a 3-D 
Topological ‚Insulator‘ 

@ 20 mK: bulk conductivity almost frozen out - Surface state mobility ca. 35000 cm2/Vs

C. Brüne et al., 
Phys. Rev. Lett. 106, 126803 (2011).
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@ 20 mK: same data, plotted as conductivity



3D HgTe-calculations
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Conclusions
– HgTe quantum wells: normal and inverted gap, linear (Dirac) dispersion

– First observation of Quantum Spin Hall Effect

– At d=dc, a HgTe QW is ideal model system for zero mass
Dirac fermion physics

– Can conveniently study Dirac fermions w/ finite Dirac mass

– Strained 3D layers show QHE of topological surface states
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