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Outline
Introduction

Anomalous Hall effect (AHE)
Anomalous Nernst effect (ANE)

GaMnAs: Dilute Magnetic Semiconductor (DMS)
AHE/ANE in absence of B-field
Validity of Mott relation with n=2 
Hole-mediated ferromagnetism, probably via impurity band

Fe3O4: Ferrimagnetic Insulator (FMI)
Robust AHE power-law scaling with n=0.3
Preliminary ANE data: absence of ANE

Summary
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Anomalous Hall Effect (AHE)

MRBR sxy += 0ρ

AHE from 5 nm-thick (In, Mn)As layer

In ferromagnets, ρxy contains two parts:

ρAH: anomalous or 
extraordinary Hall effect (AHE)

x

y

z
Vy

Je

B

ρxy exists even if B=0
AHE is more than an order greater than OHE 
ρxy ~ρAH

AHE is not caused by magnetic field, but by spin-
orbit coupling (SOC)

Normal or ordinary Hall effect (OHE)
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Physical Origin of AHE
Spin-orbit effect: extrinsic (scattering) or intrinsic (band structure)

Karplus & Luttinger (intrinsic: inter-band effect)

Smit (extrinsic: skew scattering)

Berger (extrinsic: side-jump)

Niu & MacDonald (intrinsic: Berry’s phase)

See excellent review articles: N.A. Sinitsyn, J. 
Phys.: Condens. Matter (2008); N. Nagaosa et 
al., Rev. Mod. Phys. (2010).
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Power-Law

Exponent n=2: 

σxy~ρxy/ρxx
2 (ρxx>> ρxy) 

independent of 1/τ!

Special Hall current: JH=σxyEx

Exponent n=1: 

σxy~ σxx

skew scattering (extrinsic)

n
xxsR λρ=Power-law:
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Experimental Data

Scattering rate can be tuned by impurity, 
temperature or magnetic field
Semiconductors or alloys are preferred

Iron

n=1.94

Nickel

n=1.42

Lee et al. Science(2004)

CuCr2Se4-xBrx

Pure metals are not 
ideal 
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Dilute Magnetic Semiconductors (DMS)
Carrier-mediated interaction

Mn Mn

hole

Ga

1s
2s

2p
3s

3p
3d 4s

4p

Mn

1s
2s

2p
3s

3p
3d 4s

4p

Magnetic 
Moment

Acceptor

Mn substitutes Ga in GaAs: introducing spin 
and charge carriers!

Highest Tc ~ 150 K!

• Strong SOC for holes in GaAs
• Strong impurity scattering

Zener model: Tc ~ x*p1/3

Ga1-xMnxAs: most studied DMS
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AHE in DMS

Results support intrinsic 
mechanism (but the resistivity 
range is too narrow)

“metallic”

“insulating”

Chun et al., PRL (07)

GaMnAs

n~ 2 and AHE’s carrier density 
dependence in “metallic” regime 
intrinsic origin

Edmonds et al. JAP (03)

GaMnAs
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DMS: Intrinsic AHE

Jungwirth, Niu and McDonald, PRL (02)

Spin-orbit coupling
External electric field E

Anomalous velocity

Electron wavepackets acquire additional velocity:

Under broken time reversal symmetry, this Berry phase 
effect alone gives rise to AHE comparable with 
experimental values

Jungwirth et al. APL (03)Intrinsic origin of AHE in DMS

GaAs band structure
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Nernst Effect

Normal Hall Effect

Hall effect
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Other Transport Effects

Ix Iy or ΔTx or ΔTy

ΔVx Conductivity Hall effect Peltier 
effect

Ettingshausen 
effect

ΔTx 
Seebeck 

effect
Nernst 
effect

Thermal 
conductivity

Righi-Leduc 
effect

Stimulus
Response

Stimulus: ΔVx or ΔTx
Response: and if there is B or M. 

Open-circuit condition: measuring ΔV instead of I; ΔT instead of IQ

Q
xx II , Q

xx II ,

Q
xI

Q
yI

Various coefficients are connected by Onsager relations and other relations 
(e.g. Wiedemann-Franz law, Mott relation, etc.)
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Thermoelectric Measurements
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Nernst Effect

Nernst effect is a net effect resulting from both Hall current (drift) and Nernst 
current (diffusion). In metals, it is a very small effect.

Cold Hot

E
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Normal Nernst Effect in Graphene
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Why Anomalous Nernst Effect?
Does ANE exist if AHE is caused by intrinsic effect?

Only statistical force (no E-field)

If l does not depend on Fermi energy, there will be no ANE

How are AHE and ANE related?
Validity of Mott relation
Does ANE help us understand physical origin of AHE

What can we learn about ferromagnets?
Spin-orbit coupling, magnetic ordering

(D. Xiao PRL 07)

zxxAH M2λρρ = zAH Mλσ = Finite SAN λ = λ(εF)!
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Subtleties with DMS

Films with in-plane anisotropy often require high magnetic fields to 
obtain finite AHE (i.e. Mz). To completely saturate Mz, it requires 
magnetic fields in excess of 10 T! 
Normal Hall/Nernst signals become large at high fields.
High magnetic fields cause significant magneto-resistance (i.e. 
change in ρxx), even when AHE saturates.
In DMS, all spins contribute to magnetization, but only those in hole-
rich regions contributes to AHE; therefore, it is difficult to separate 
these two for .

Solutions: 
• DMS films with perpendicular anisotropy (no need to have B-field)
• ANE and AHE measured simultaneously from the same area (no 
need to measure M)

zxxAH M2λρρ =
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A set of films with different Mn, so different Tc’s.
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AHE in GaMnAs
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AHE & ANE in Different Samples
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AHE & ANE at Different Temperatures
x=0.04* (annealed)

• Except for sign, AHE and ANE scale with each other share the same physical origin!
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Zero-Field Sxx and Syx

Nernst Seebeck
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Mott Relation

No longer need to measure M 
independently removing uncertainty 
in M measurements

All transport coefficients are from 
exactly the same region (Hall bar cross)
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Hall currentNernst current

Syx Sign Change
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Exponent “n”
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Nernst Current: JN
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Intrinsic vs. Side Jump
n=2 intrinsic or side jump (SJ)

In GaMnAs, 
Intrinsic mechanism can account for most of AHE magnitude

SJ displacement Δy < 0.1 nm, and MFP is about ~ 20 nm.
Hall angle ΘH < 0.05 for SJ; observed Hall angle ΘH ~ 0.1

AHE/ANE is likely dominated by intrinsic mechanism 

Mott relation holds for AHE/ANE with intrinsic (Berry’s phase) mechanism.
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Meaning of
λ depends on Fermi energy
We obtain the value of

'/λλ

'/λλ

eVF 1.005.0
'

−≈=
α
ε

λ
λ

For small εF, we assume αελ F∝

For p~ 1019cm-3, obtained εF is an order smaller than 
expected from valence band, suggesting the impurity 
band picture.
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Magnetic Insulator Films: Fe3O4/MgO (001)
Fe3O4 films are epitaxially grown with laser MBE

RHEED pattern and oscillations

Fe3O4 film on MgO
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Power-Law Scaling

0.0 0.5 1.0 1.5 2.0 2.5
-5

-4

-3

-2

-1

0

σxy = 8.26E-5 x σxx
1.68

Lo
g(
σ

xy
)

Log(σxx)

 s20101108
 s20101119
 s20101204_1uA
 s20101210
 s20101204_He3

A much smaller n=0.32!
Consistent with other reported value.

-8 -6 -4 -2 0 2 4 6 8
-80

-60

-40

-20

0

20

40

60

80

ρ H
 (μ

Ω
 c

m
)

Field (Tesla)

 T = 282 K
 T = 245 K
 T = 221 K
 T = 200 K
 T = 176 K
 T = 175 K
 T = 160 K
 T = 150 K
 T = 136 K
 T = 135 K
 T = 120 K

50 ML Fe3O4/MgO

AHE signal above Verwey temperature



06/22/2011“The World of Hall Physics” at ICQM/Beijing

AHE and Power-Law
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Thermoelectric Measurements
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Summary

Large ANE is observed in GaMnAs [λ=λ(εF)].
AHE and ANE share the same physical origin. 
“n=2” is obtained from zero-field AHE and ANE without 
uncertainty in magnetization measurements.
Our results suggest intrinsic Nernst current JN.

Mott relation is experimentally validated for scattering rate-
independent anomalous transport.
Small magnitude of λ/λ’ suggests impurity band picture.
“n=0.3” is found in epitaxial Fe3O4 films, but ANE has not 
been observed.
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Discussion: 1. Effect of High B-Field
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In most experiments with in-plane anisotropy samples, high magnetic 
fields are used, but the effect of B-field on the power-law scaling is 
unclear. Which field is the proper one? 

x=0.02



06/22/2011“The World of Hall Physics” at ICQM/Beijing

Find Exponent n
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• Exponent is not always one or two

• Separate magnetization 
measurement is
needed

• Hall loops are different from MH 
loops
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Rxy and M Measurements
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