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Anomalous Hall effect (AHE)
Anomalous Nernst effect (ANE)
GaMnAs: Dilute Magnetic Semiconductor (DMS)
AHE/ANE in absence of B-field
Validity of Mott relation with n=2
Hole-mediated ferromagnetism, probably via impurity band
Fe,;O,: Ferrimagnetic Insulator (FMI)
Robust AHE power-law scaling with n=0.3
Preliminary ANE data: absence of ANE
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Anomalous Hall Effect (AHE)

In ferromagnets, p,, contains two parts:
Normal or ordinary Hall effect (OHE)
B‘

S Pan: @nomalous or
extraordinary Hall effect (AHE)

. . U.B_ Lr'Gz.D‘\.-' S;mple.;. ) [ )

> pyy exists even if B=0 D= N

» AHE is more than an order greater than OHE 5 | == 30K 1
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AHE is not caused by magnetic field, but by spin- _ | &Ly £

orbit coupling (SOC) ol o 1 ]

AM

AHE from 5 nm-thick (In, Mn)As layer
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Physical Origin of AHE
1

Spin-orbit effect: extrinsic (scattering) or intrinsic (band structure)

Intrinsic deflaction
See excellent review articles: N.A. Sinitsyn, J.

Intarband coherance induced by an
extarnal alactric field givas rise toa
Phys.: Condens. Matter (2008); N. Nagaosa et

valozity contribution parpandicular to
tha figkd diraction. Thasa curmants do
al., Rev. Mod. Phys. (2010).

not sum to zero in farramagnats.

Electrons hava an anomalous welocity parpandicular to
tha alactric fisld rlatad to thair Barry's phase curvatura

 Skew scattering

Asymmetric scatiaring dus to
the effactive spin-orbit coupling
af tha alactron ar tha impurity.

Side jump

The alectron valocity is daflactad in apposita dirsctions by the opposite
alactric fields exparianced upon approaching and leaving an impurity.
Tha tima-intagrated valacity deflaction i tha sida jump.

“*Niu & MacDonald (intrinsic: Berry’s phase)
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Power-Law

Power-law:

Ry = A0y

s Exponent n=2:

~ 2
Oyxy pxy/ XX

(Pxc™> Pxy)

—> independent of 1/7!

— Special Hall current: J,=c,,E,

s Exponent n=1.

Oxy™ Oxx

skew scattering (extrinsic)
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Experimental Data
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Scattering rate can be tuned by impurity,
temperature or magnetic field

Semiconductors or alloys are preferred

Pure metals are not
ideal
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Dilute Magnetic Semiconductors (DMS)

Ga; ,Mn,As: most studied DMS Carrier-mediated interaction

= Zener model: T, ~ x*p1/3

Ca %jt 3p

3s
444 2 _
4 o | Magnetic | [ accontor
* 1s 0
A g
Mn 44 3
% 3s '
444 2
'1+ 25
4 15
_ _ _ _ _ Highest T, ~ 150 K!
Mn substitutes Ga in GaAs: introducing spin _
and charge carriers! « Strong SOC for holes in GaAs

 Strong impurity scattering
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AHE In DMS
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Results support intrinsic
mechanism (but the resistivity n~ 2 and AHE’s carrier density
range is too narrow) dependence in “metallic” regime -

Intrinsic origin
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DMS: Intrinsic AHE

GaAs band structure — 1\ /

» Spin-orbit coupling -+

>External electric field E N/ S
e iy
Electron wavepackets acquire additional velocity:
i E ~ -
Xe = — (e/H)E * ().
fiak
\Anomalous velocity

Under broken time reversal symmetry, this Berry phase

effect alone gives rise to AHE comparable with
experimental values

- Intrinsic origin of AHE in DMS
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Nernst Effect

0

Nernst effect

E E AV, L
O = —y SN = y =
", (VT), AT, W
—" Normal Hall Effect Normal Nernst Effect
o, <B Sy «<B
Anomalous Hall Effect (AHE) Anomalous Nernst Effect (ANE)
oc M S,y <M
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Other Transport Effects

Stimulus: AV, or AT,
Response: > 1,12 and I,,1¢ if thereis B or M.

Open-circuit condition: measuring AV instead of |; AT instead of IQ

Response 0 12
SEmMulus |, ly > or AT, y Or AT,
AV, Conductivity | Hall effect A2 SUERETEE
effect effect
AT Seebeck Nernst Thermal Righi-Leduc
X effect effect conductivity effect

Various coefficients are connected by Onsager relations and other relations
(e.g. Wiedemann-Franz law, Mott relation, etc.)
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Thermoelectric Measurements

Sample holder
©
TOp
view —
_VT <

Macroscopic GamAs sample

Typical AT ~ 50 mK; AT is measured
by microfabricated thermometers.
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Nernst Effect

Open circuit voltage (J, and J,=0)

J =0k +al(-VT)

diffusion drift
N\ /
1 X v
Syx = —(ayx o O-nyxx)
GXX 4 A
Nernst current Hall current

Nernst effect is a net effect resulting from both Hall current (drift) and Nernst
current (diffusion). In metals, it is a very small effect.

Mott q, =
relations

ayX:

),

n°kiT (0o,
3e oe
n°kiT (0o,
3e o¢

),

kT (8®H

3e ok

),
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Normal Nernst Effect in Graphene
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Why Anomalous Nernst Effect?

Does ANE exist if AHE is caused by intrinsic effect?
Only statistical force (no E-field)

o E

ﬁ-ri'.ﬂ:
If | does not aepena on Fermi energy, there will be no ANE

+ (e/H)E x 0.

Xe

Pt =AM, | = o, =AM | Finite Spy > 7 = A(ep)!

How are AHE and ANE related?
Validity of Mott relation (D. Xiao PRL 07)
Does ANE help us understand physical origin of AHE

What can we learn about ferromagnets?
Spin-orbit coupling, magnetic ordering
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Subtleties with DMS

Films with in-plane anisotropy often require high magnetic fields to
obtain finite AHE (i.e. M,). To completely saturate M,, it requires
magnetic fields in excess of 10 T!

Normal Hall/Nernst signals become large at high fields.

High magnetic fields cause significant magneto-resistance (i.e.
change in p,,), even when AHE saturates.

In DMS, all spins contribute to magnetization, but only those in hole-
rich regions contributes to AHE; therefore, it is difficult to separate
these two for p,, = Ap>M,.

—_— SOlutions:

 DMS films with perpendicular anisotropy (no need to have B-field)
 ANE and AHE measured simultaneously from the same area (no
need to measure M)
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GaMnAs with Perpendicular Anisotropy

(Ga, Mn,)As 50 nm

(In Ga,_ )As 500 nm
GaAs 50 nm
S. |. GaAs (001) sub.

“B=0"is a special field

InGaAs buffer layer - tensile strain
—>perpendicular anisotropy

A set of films with different Mn, so different T_'s.

AHE (OHE is negligible)

Longitudinal resistivity

.\ | ]

— 6K /."(- T=6K
— 30K 1 ~ 78.0 .'. l‘.
58K g S
— 70K | / = ..'-.
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77.8- "
| T.7OK 3
- 2 6 3
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AHE In GaMnAs

ﬁ 0.07*
10 3 =1 .
Hall resistivity . ?E:, 01 AHE remains
i ey T=10K positive below T,

p A SIMME . : .
Xy 02 00 02

1 000000 00,0 0 O v:\‘ 5 ()
'\
& . B=0 x=0.04*,
0.1 wih s Yyyw wro 0 0 @ 0.05*, and
500 [ ' 0.07* are
annealed but
Longitudinal resistivity ", x=0.05 is not.
p 10 YYVVvvy
- XX B=0 Usual power-law
50 .o B leTere analysis is highly
on-;'/'/"/././‘ unreliable because
All “metallic™ 007 ! ! of uncertainty in
0 100 200 determining M
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AHE & ANE In Different Samples

(T=10K

| J
X(-1)
-04 0.0 04
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No ordinary Nernst effect is visible; S, goes with p,,
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AHE & ANE at Different Temperatures

x=0.04* (annealed)

{6 5} . 15
ANE
16 51 et @5

0 10 O
5 —. @- -2 1k
04 0.0 04 -2 0 2
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» Except for sign, AHE and ANE scale with each other - share the same physical origin!
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Zero-Field S, and S, ,

Nernst

Seebeck
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Mott Relation

' 21,2 g
Py = AMp,, Mot relation > S, o (nyj = /IMpxnx‘l[T ﬂ—kBi—(n —1)SXX]
Pix “ 3 4
Replace M by o, &
o,y by reusing the
21,2 M -law
) k2 2 power
We have Sy = & (T = ——(n _1)Sxx]
Prs A

——M

—- pxy/ / »No longer need to measure M

Independently - removing uncertainty

-0.3

/. / In M measurements
o bkt T=8K -
, , » All transport coefficients are from
0.0 0.3 exactly the same region (Hall bar cross)
B (kG)
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Syx Sign Change

Nernst current:

Jy = ayx(—VT)X

Nernst current Hall current

Syx = LO-XY ] — i(ayx B O-nyxx)

Open circuit voltage (J, and J,=0) O xx Oy
LS DN \
(- 21,20
Syx = P T N kB X (N —1)Sxx
Pk 384

Qernst curre@ \Hall current’/

Sign change is only possible if n > 1, > NOT skew scattering!

At low-T where S,, is large, Hall current exceeds Nernst current = Sign Change!
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Exponent “n”
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50 100 O 100 200
T (K)
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Red solid lines are
fits to Mott relation

1-10

21,2 M
s, =2 17Xt g
% A

Pxx

|

Mott relation
works well for n=2!
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Nernst Current: Jy

21,2 14
ayx = '0ny T z kB i_(n _Z)Sxx
P xx ke A

0 50 100 0 100 200

| 0.02 | j
Nernst current: i - 0.05
‘]N :_ayx(VT)x Q ]
.)( -
£ 0.00 10.00
~—
— ]1Dashed
55 o Oa x=0.04* S "Iinaes: r?zl
0.08 g
< 10.2
N S ]

n=2 - nothing in a,,
depends on scattering!
- intrinsic Nernst current T (K)
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Intrinsic vs. Side Jump

n=2 -> Intrinsic or side jump (SJ)

In GaMnAs,
¢ Intrinsic mechanism can account for most of AHE magnitude

s SJ displacement Ay < 0.1 nm, and MFP is about ~ 20 nm.
Hall angle ®, < 0.05 for SJ; observed Hall angle ®, ~ 0.1

* AHE/ANE is likely dominated by intrinsic mechanism

Mott relation holds for AHE/ANE with intrinsic (Berry’s phase) mechanism.

I%iVIEIRSIL DE “The World of Hall Physics” at ICQM/Beijing 06/22/2011



Meaning of A/A

A depends on Fermi energy
We obtain the value of A/ A’

HA* #5 H* H7*
n 196 1.95 18 204
U2 vy 0.046 0,049 0.040 0.0%

For small &, we assume A oc gf

A

For p~ 10%°cm-3, obtained &: is an order smaller than
expected from valence band, suggesting the impurity

(04

band picture.
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Valence I purity

and Band Conduction

Band

Energy
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Magnetic Insulator Films: Fe,O,/MgO (001)

Fe;0, films are epitaxially grown with laser MBE

MmN " RHEED pattern and oscillations

Fe,0, film on MgO

| Intensity)
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Power-Law Scaling

50 ML Fe,0,/MgO ik
80 -
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= -20- 1'°®
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AHE signal above Verwey temperature A much smaller n=0.32!

Consistent with other reported value.

IZ%'MVIE”RSIL DE “The World of Hall Physics” at ICQM/Beijing 06/22/2011



AHE and Power-Law
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Thermoelectric Measurements
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Summary

Large ANE is observed in GaMnAs [A=A(gg)].
AHE and ANE share the same physical origin.

“n=2" Is obtained from zero-field AHE and ANE without
uncertainty in magnetization measurements.

Our results suggest intrinsic Nernst current Jy

Mott relation is experimentally validated for scattering rate-
Independent anomalous transport.

Small magnitude of A/A’ suggests impurity band picture.

“n=0.3" Is found In epitaxial Fe;O, films, but ANE has not
been observed.
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Discussion: 1. Effect of High B-Field

In most experiments with in-plane anisotropy samples, high magnetic
fields are used, but the effect of B-field on the power-law scaling is
unclear. Which field is the proper one?
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Find Exponent n
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R,, and M Measurements
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