
Feng Liu1, Zhengfei Wang1,2, Mei-Yin Chou2 

1Department of Materials Science and Engineering, University of Utah 
2School of Physics, Georgia Institute of Technology 

 



Band Structure of Monolayer and Bilayer 
 Graphene 
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Hofstadter Butterflies of of Monolayer and 
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Motivation 

 
 How do the electronic properties of twisted bilayer 

 graphene change with the twist angle?  

 

 How do the LLs evolve as the twist angle changes? 

 

 Will there be a difference between twisted bilayer graphene  

     with commensurate and incommensurate angles? 



Real space Hamiltonian (Hermitian matrix) 

Construct a new orthogonal basis 
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Lanczos Recursive Method 
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Recursive relation 

0 is the initial state localized at one atom site  N 210 ,,
N is the total number of atoms 
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Hamiltonian in the new basis 
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Real space Green’s function  at the initial state (continued fraction expansion) 
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Landau Levels of Monolayer and Bilayer Graphene 
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Twisted Bilayer Graphene 

Starting from AB stacking  
bilayer graphene, 

bottom layer is fixed and  
top layer is twisted. 

 
Twist center is at A atom in the  
top layer with a neighboring B  

atom in the bottom layer. 

Commensurate angle 

Other  θ’s are  
incommensurate angles 
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Tight-binding Parameterization  

TB parameters are obtained by fitting the TB bands 
to reproduce first-principles band structures 
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Landau Levels as a Function of Position  

Commensurate , B=10T 

θ=2.4718O                               θ=7.56507O  

   
θ=2.0O                                              θ=7.0O  

   

Incommensurate , B=10T 



Landau Levels as a Function of Position  
Incommensurate, θ=2.0O 

B=10T B=30T B=60T 



Landau Levels as a Function of Position  

commensurate, θ=1.8901O 

B=180T 



Landau Levels as a Function of Twist Angle 



Laudau Levels of  Twisted Bilayer Graphene 
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“Near-Zero” Twist Angles: Bilayer Graphene Region 

Commensurate 
θ=0.06853O 



Large Twist Angles: Monolayer Graphene Region 

Commensurate 
θ=7.56507O 



Small Twist Angles: “Fractional-layer” Region 
Commensurate: 

θ=2.56292O θ=1.64996O θ=1.06689O 

Incommensurate: 
θ=2.1O θ=1.5O θ=1.2O 



Fractal Spectra 
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Conclusion 

 Local LLs are independent of the lattice position for both  
    commensurate and incommensurate twist angles in low 
    magnetic field. 
 
 The behavior of LLs can be classified into three regions  
    depending on the twist angle. 
 
LLs in the regions of near-zero and large twist angles are 
    characterized by a renormalized Fermi velocity as bi- and 
    mono-layer graphene, respectively. 
 
In between, LLs show a complex fractional-layer behavior 
    (Hofstadter butterfly) in a reasonably low magnetic field. 



Pseudo Magnetic Field 
in Graphene Nanobubble 



Strain-Induced Pseudo–Magnetic Fields  
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Pseudo–Magnetic Fields in Graphene Nanobubble 
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Linear Fitting 

Graphene landau level 
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Strain-Induced Pseudo–Magnetic Fields ? 



Is This Really the “Strain-Induced” 
Pseudo–Magnetic Field Effect ? 

Curvature effect Strain effect 



Strain Map of 2D Graphene Nanobubble 

 Case two: relax  all (10% strain) 

 Case one: fix z (10% strain) 



1D Graphene Nanobubble 


