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Decoupling Behavior of Multilaye
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Motivation

» How do the electronic properties of twisted bilayer
graphene change with the twist angle?

» How do the LLs evolve as the twist angle changes?

» Will there be a difference between twisted bilayer graphene
with commensurate and incommensurate angles?



= Lanczos Recursive Method
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Real space Hamiltonian (Hermitian matrix)
e ri - o~y . -
H=2ton(-[ Adla'a,  A=(0,BX)
1]

Construct a new orthogonal basis

D) i e . ,
ﬂq)0>, ¢1>"®2>,,,‘®N>} ‘ 0> is the initial state localized at one atom site
N is the total number of atoms
P,
a, =(0y|H|D,) e ~

Recursive relation
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Hamiltonian in the new basis
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Real space Green’s function at the initial state (continued fraction expansion)
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140nmx140nm, over 1.5million atoms!
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Starting from AB stackin
"d%‘ l.".‘. .\,.' X5 bilayer graphene,

' ‘ ./ \, 2 3
W bottom layer is fixed and

’.“. \.’.\" ' .'.’.I" . : ;
top layer is twisted.
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Twist center is at A atom in the

top layer with a neighboring B
atom in the bottom layer.
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Other 0’s are
incommensurate angles




/ Tight-binding Parameterization
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TB parameters are obtained by fitting the TB bands
to reproduce first-principles band structures
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andau Levels as a Fu

=2.0°

Incommensurate, 0

o

mﬁ..

X (A)

B=60T

B=10T

0.2

0.1

(A®) 3

-0.1

-0.2

-50

Y (A)

Y (A)

Y (A)



andau Levels as a Fu

T
o
00
i
I
(a'a]
—
o
o w
(@)
cQ
i .u
«
1] 0
D
-
Q
© |
| . S
2
e o
o]
C e
o
o
o
~
o
e

Y (A)

B (T)

B (T)



Landau Levels as a Function of Twist Angle
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Conclusi

» Local LLs are independent of the lattice position for both
commensurate and incommensurate twist angles in low
magnetic field.

» The behavior of LLs can be classified into three regions
depending on the twist angle.

»LLs in the regions of near-zero and large twist angles are
characterized by a renormalized Fermi velocity as bi- and
mono-layer graphene, respectively.

»In between, LLs show a complex fractional-layer behavior
(Hofstadter butterfly) in a reasonably low magnetic field.
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Pseudo Magnetic Field
in Graphene Nanobubble



Strain field
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m—Magnetic Fields in Graphene Nanobubble

Linear Fitting
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Pseudo—Magnetic Field Effect ?

> Strain€ffect > Curvatu@




~_—Strain Map of 2D Graphene Nanobtﬁ{

» Case one: fix z (10% strain)
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