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Outline

‣ The quest for topological states of matter

• Quantum Hall Effect

• Topological Insulators

‣ Heterostructures of transition-metal oxides

• Quantum spin Hall effect

• Integer quantum Hall effect

• Fractional quantum Hall effect

‣ Summary
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The QHE: A Tribute to Materials Advance

“It should also be mentioned that advances in technology and production methods 
within semiconductor electronics have played a crucial role in the study of two-
dimensional electron systems, and were a precondition for the discovery of the 
quantised Hall effect.”—Press Release: The 1985 Nobel Prize in Physics
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In this paper we report a new, potentially high-

accuracy method for determining the fine-struc-
ture constant, n. The new approach is based on
the fact that the degenerate electron gas in the in-
version layer of a MOSFET (metal-oxide-semi-
conductor field-effect transistor) is fully cluan-
tized when the transistor is operated at helium
temperatures and in a strong magnetic field of
order 15 T.' The inset in Fig. 1 shows a schem-
atic diagram of a typical MOSFET device used in
this work. The electric field perpendicular to the
surface (gate field) produces subbands for the mo-
tion normal to the semiconductor-oxide interface,
and the magnetic field produces Landau quantiza-
tion of motion parallel to the interface. The den-
sity of states D(E) consists of broadened 5 func-
tions'; minimal overlap is achieved if the mag-
netic field is sufficiently high. The number of
states, NL, within each Landau level is given by

V„=ea/I, (&)

UHI N
li

25 -2.5

20.-2.0

15-1.5

10 -1.0

5--0.5

0;
0:;

Upp lmV
p-SUBSTRATE

HALL PROBE

10 15 20

--ORAIN

~ ~ g SURFACE CHANNEL $~&n'
SOURCE GATE/

POTENTIAL PROBES

25
where we exclude the spin and valley degenera-
cies. If the density of states at the Fermi ener-
gy, N(EF), is zero, an inversion layer carrier
cannot be scattered. , and the center of the cyclo-
tron orbit drifts in the direction perpendicular to
the electric and magnetic field. If N(FF) is finite
but small, an arbitrarily small rate of scattering
cannot occur and localization produced b th l
lxf t

y e ong
e arne is the same as a zero scattering rate,

i.e., the same absence of current-carrying states
occurs. ' Thus, when the Fermi level is between
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unction of the gate voltage V at T = 1.5 K. The con-
stant magnetic field {B) is 18 T and the source drain
current, l, is 1 A.p, . The inset shows a top view of the
device with a length of I =400 pm, a width of 8' =50 pm,
and a distance between the potential probes f I
p,m.
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von Klitzing, Dorda & Pepper, 1980
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‣ Hall plateau: Localization physics

‣ Precise quantization: Nontrivial topology 

Precise Quantization: Topological Origin

Thouless et al, 1982; Niu, Wu & Thouless, 1985
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The Magnetic Butterfly

Hofstadter’s Butterfly. Credit: J.E. Avron

Is Magnetic Field Necessary?
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QHE without Landau Levels

‣ Periodic magnetic field with zero total flux through the unit cell

‣ Next nearest neighbor hopping becomes complex, opens a band 
gap

VOLUME 61, NUMBER 18 PHYSICAL REVIEW LETTERS 31 OCTOBER 1988

Model for a Quantum Hall Eff'ect without Landau Levels:
Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane
Department ofPhysics, University of California, San Diego, La Jolla, California 92093

(Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance a" in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity
anomaly" of (2+1)-dimensional field theories.

PACS numbers: 05.30.Fk, 11.30.Rd

The quantum Hall effect' (QHE) in two-dimensional
(2D) electron systems is usually associated with the pres-
ence of a uniform externally generated magnetic field,
which splits the spectrum of electron energy levels into
Landau levels. In this Letter I show how, in principle, a
QHE may also result from breaking of time-reversal
symmetry (i.e., magnetic ordering) without any net mag-
netic fiux through the unit cell of a periodic 2D system.
In this case, the electron states retain their usual Bloch
state character.
The model presented here is also interesting in that if

its parameters are on a critical line at which its ground
state changes from the normal semiconductor state to
this new type of QHE state, its low-energy states simu-
late a "(2+1)-dimensional" relativistic quantum field
theory exhibiting the so-called "parity anomaly" and a
(2+1)-D analog of "chiral" fermions without the
opposite-chirality anomaly-canceling partners that usu-
ally accompany them in lattice realizations of field
theories ("fermion doubling" ).
In the zero-temperature limit, the transverse conduc-

tivity o "3' of a periodic 2D electron system with a gap in
the single-particle density of states at the Fermi level
takes quantized values ve /h, where v is generally ra-
tional, but can only take i nteger values in the absence of
electron interactions. This property of a pure system is
stable against sufficiently weak disorder effects. Since
a" is odd under time reversal, a nonzero value can only
occur if time-reversal invariance is broken.
In the usual QHE, the gap at the Fermi level results

from the splitting of the spectrum into Landau levels by
an external magnetic field. The scenario considered here
is different, and involves a 2D semimetal where there is a
degeneracy at isolated points in the Brillouin zone be-
tween the top of the valence band and the bottom of the
conduction band, that is associated with the presence of
both inversion symmetry and time-reversal invariance.
If inversion symmetry is broken, a gap opens and the sys-
tem becomes a normal semiconductor (v=0), but if the
gap opens because time-reversal invariance is broken the
system becomes a v=+ 1 integer QHE state. If both
perturbations are present, their relative strengths deter-

,bg qb, ~,

FIG. 1. The honeycomb-net model ("2D graphite") showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the A
and 8 sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symmetry
(marked "+")and is then bounded by the hexagon of nearest-
neighbor bonds. Arrows on second-neighbor bonds mark the
directions of positive phase hopping in the state with broken
time-reversal invariance.

mine which type of state is realized.
To model a 2D semimetal, I use the "2D graphite"

model investigated previously by Semenoff as a possible
lattice realization of a (2+I)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.
Semenoff investigated the tight-binding model with

one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for MAO.

1988 The American Physical Society 2015

Haldane, 1988

Nontrivial topology in simple band insulators
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‣ sz conserved: Two copies of Haldane model

‣ sz not conserved: Edge states still protected by T-symmetry

QSHE driven by Spin-Orbit Interaction

arise due to a perpendicular electric field or interaction
with a substrate. The fourth term is a staggered sublattice
potential (!i ! "1), which we include to describe the
transition between the QSH phase and the simple insulator.
This term violates the symmetry under twofold rotations in
the plane.

H is diagonalized by writing "s#R$ #d% !
u#s#k%eik&R. Here s is spin and R is a bravais lattice vector
built from primitive vectors a1;2 ! #a=2%#

!!!
3

p
ŷ " x̂%. # !

0; 1 is the sublattice index with d ! aŷ=
!!!
3

p
. For each k the

Bloch wave function is a four component eigenvector
ju#k%i of the Bloch Hamiltonian matrix H #k%. The 16
components of H #k% may be written in terms of the
identity matrix, 5 Dirac matrices !a and their 10 commu-
tators !ab ! '!a;!b(=#2i% [9]. We choose the following
representation of the Dirac matrices: !#1;2;3;4;5% !
#$x ) I;$z ) I;$y ) sx;$y ) sy;$y ) sz%, where the
Pauli matrices $k and sk represent the sublattice and spin
indices. This choice organizes the matrices according to
T . The T operator is given by "jui * i#I ) sy%jui+. The
five Dirac matrices are even under T , "!a",1 ! !a

while the 10 commutators are odd, "!ab",1 ! ,!ab.
The Hamiltonian is thus

H #k% !
X5

a!1

da#k%!a $
X5

a<b!1

dab#k%!ab; (2)

where the d#k%’s are given in Table I. Note that H #k$
G% ! H #k% for reciprocal lattice vectors G, so H #k% is
defined on a torus. The T invariance of H is reflected in
the symmetry (antisymmetry) of da #dab% under k ! ,k.

Equation (2) gives four energy bands, of which two are
occupied. For %R ! 0 there is an energy gap with magni-
tude j6

!!!
3

p
%SO , 2%vj. For %v > 3

!!!
3

p
%SO the gap is domi-

nated by %v, and the system is an insulator. 3
!!!
3

p
%SO > %v

describes the QSH phase. Though the Rashba term violates
Sz conservation, for %R < 2

!!!
3

p
%SO there is a finite region of

the phase diagram in Fig. 1 that is adiabatically connected
to the QSH phase at %R ! 0. Figure 1 shows the energy
bands obtained by solving the lattice model in a zigzag
strip geometry [7] for representative points in the insulat-
ing and QSH phases. Both phases have a bulk energy gap
and edge states, but in the QSH phase the edge states
traverse the energy gap in pairs. At the transition between
the two phases, the energy gap closes, allowing the edge
states to ‘‘switch partners.’’

The behavior of the edge states signals a clear difference
between the two phases. In the QSH phase for each energy

in the bulk gap there is a single time reversed pair of
eigenstates on each edge. Since T symmetry prevents
the mixing of Kramers’ doublets these edge states are
robust against small perturbations. The gapless states
thus persist even if the spatial symmetry is further reduced
[for instance, by removing the C3 rotational symmetry in
(1)]. Moreover, weak disorder will not lead to localization
of the edge states because single particle elastic backscat-
tering is forbidden [7].

In the insulating state the edge states do not traverse the
gap. It is possible that for certain edge potentials the edge
states in Fig. 1(b) could dip below the band edge, reduc-
ing—or even eliminating—the edge gap. However, this is
still distinct from the QSH phase because there will nec-
essarily be an even number of Kramers’ pairs at each
energy. This allows elastic backscattering, so that these
edge states will in general be localized by weak disorder.
The QSH phase is thus distinguished from the simple
insulator by the number of edge state pairs modulo 2.
Recently two-dimensional versions [10] of the spin Hall
insulator models [11] have been introduced, which under
conditions of high spatial symmetry exhibit gapless edge
states. These models, however, have an even number of
edge state pairs. We shall see below that they are topologi-
cally equivalent to simple insulators.

The QSH phase is not generally characterized by a
quantized spin Hall conductivity. Consider the rate of
spin accumulation at the opposite edges of a cylinder of
circumference L, which can be computed using Laughlin’s
argument [12]. A weak circumferential electric field E can
be induced by adiabatically threading magnetic flux
through the cylinder. When the flux increases by h=e
each momentum eigenstate shifts by one unit: k ! k$
2&=L. In the insulating state [Fig. 1(b)] this has no effect,
since the valence band is completely full. However, in the
QSH state a particle-hole excitation is produced at the
Fermi energy EF. Since the particle and hole states do
not have the same spin, spin accumulates at the edge.
The rate of spin accumulation defines a spin Hall conduc-
tance dhSzi=dt ! Gs

xyE, where

TABLE I. The nonzero coefficients in Eq. (2) with x ! kxa=2
and y !

!!!
3

p
kya=2.

d1 t#1$ 2 cosx cosy% d12 ,2t cosx siny
d2 %v d15 %SO#2 sin2x, 4 sinx cosy%
d3 %R#1, cosx cosy% d23 ,%R cosx siny
d4 ,

!!!
3

p
%R sinx siny d24

!!!
3

p
%R sinx cosy

0 2π0 2π
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1
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SOE
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FIG. 1 (color online). Energy bands for a one-dimensional
‘‘zigzag’’ strip in the (a) QSH phase %v ! 0:1t and (b) the
insulating phase %v ! 0:4t. In both cases %SO ! :06t and %R !
:05t. The edge states on a given edge cross at ka ! &. The inset
shows the phase diagram as a function of %v and %R for 0<
%SO - t.

PRL 95, 146802 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
30 SEPTEMBER 2005

146802-2

Kane & Mele, 2005

Spin-orbit interaction

∆Haldaneσzτz

∆SOσzτzsz

T-symmetry breaking (!z,"z,sz) = 
(sublattice, valley, spin)

Topological insulators are characterized by nontrivial band topology (Z2) driven 
by spin-orbit interaction and support robust “helical” edge/surface states

2D: Kane & Mele, PRL 2005; Bernevig, Hughes, & Zhang (2006)
3D: Fu, Kane & Mele, 2007; Moore & Balents (2007)
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Haldane: What has Just Happened?

Haldane’s original 
paper in 1988

Kane-Mele

17 years later...
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This Happened

Material is the key
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‣ CdHgTe/HgTe/CdHgTe (Bernevig et al, Science 2006, Konig et al, Science 
2007)

‣ Bi1-xSbx (Fu and Kane, PRB 2007, Hsieh et al, Nature 2008)

‣ Bi2Se3, Bi2Te3, Sb2Te3 (Zhang et al, Nat Phys 2009, Xia et al, Nat Phys 
2009, Chen et al, Science 2009)

‣ TlBiTe2 and TlBiSe2 (Lin et al, PRL 2010, Yan et al, EPL 2010, Sato et al, 
PRL 2010, Chen et al, PRL 2011)

‣ Half-heuslers, Chalcopyrites (Lin et al, Nat Mat. 2010, Chadov et al, Nat Mat 

2010, Xiao et al, PRL, 2010, Feng et al, PRL 2010) 

‣ Many more...

Topological Insulators: A Growing Family

s            p

Wednesday, June 22, 2011
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What About d-Orbitals?

Wanted Specialize in superconductivity, 
magnetism, ferroelectricity, Mott 

insulating, etc.
+

Topological order

‣ Proximity effects between TIs and symmetry-breaking states,
(magnetoelectric effects, Majorana fermions)

‣ Competing phases: Mott vs. TI

Shitade et al, 2009; Pesin & Balents, 2010
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Heterostructures of 
Transition-Metal Oxides
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Heterostructures of Transition-Metal Oxides

‣ Layered structure can be prepared with atomic precision

‣ Great flexibility: tunable lattice constant, carrier 
concentration, spin-orbit interaction, correlation strength

[LaMnO3]n[SrTiO3]m
superlattice

by courtesy of H. N. Lee, ORNL
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Perovskite (111)-bilayer

Credit: Satoshi Okamoto
Wednesday, June 22, 2011



Perovskite (111)-bilayer
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FIG. 1: Formation of the honeycomb lattice in a (111) bilayer in the cubic lattice. a,

Perovskite structure ABO3. b, A (111) bilayer consisting of the top layer indicated by red circles

and the bottom layer indicated by blue circles. The lattice constant is a0. The bilayer shown as

solid lines in b forms the honeycomb lattice when projected on the [111] plane with the lattice

constant ã =
√

2/3a0 c. The real space coordinates are labeled by (x, y, z) in the original cubic

lattice, while it is labeled by (X,Y ) in the [111] plane. d, Level structure of TM d orbital. In

the cubic environment, d orbitals split into eg and t2g manifolds. With the SOC, t2g manifold

further splits into two levels characterized by the effective total angular momentum j = 1/2 and

3/2. With the trigonal crystal field, t2g manifold splits into two levels denoted by a1g and e′g. With

both the SOC and the trigonal field, t2g manifold splits into three levels and eg manifold splits into

two levels, i.e., all the degeneracies are lifted except the Kramers doublets. e, ABO3 monolayer is

grown on AO3 terminated AB′O3 substrate capped by AB′O3. The direction of crystal growth is

indicated by an arrow.

13

‣ Honeycomb lattice: Similar physics to graphene is expected

‣ Sublattices on different layer: Inversion symmetry breaking can be 
externally controlled (i.e., gating or asymmetric substrates)

‣ Reduced crystal field symmetry: Octahedral to trigonal

ABO3
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Atomic Orbitals in Crystal Field + SO
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FIG. 1: Formation of the honeycomb lattice in a (111) bilayer in the cubic lattice. a,

Perovskite structure ABO3. b, A (111) bilayer consisting of the top layer indicated by red circles

and the bottom layer indicated by blue circles. The lattice constant is a0. The bilayer shown as

solid lines in b forms the honeycomb lattice when projected on the [111] plane with the lattice

constant ã =
√

2/3a0 c. The real space coordinates are labeled by (x, y, z) in the original cubic

lattice, while it is labeled by (X,Y ) in the [111] plane. d, Level structure of TM d orbital. In

the cubic environment, d orbitals split into eg and t2g manifolds. With the SOC, t2g manifold

further splits into two levels characterized by the effective total angular momentum j = 1/2 and

3/2. With the trigonal crystal field, t2g manifold splits into two levels denoted by a1g and e′g. With

both the SOC and the trigonal field, t2g manifold splits into three levels and eg manifold splits into

two levels, i.e., all the degeneracies are lifted except the Kramers doublets. e, ABO3 monolayer is

grown on AO3 terminated AB′O3 substrate capped by AB′O3. The direction of crystal growth is

indicated by an arrow.
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FIG. 1: Formation of the honeycomb lattice in a (111) bilayer in the cubic lattice. a,

Perovskite structure ABO3. b, A (111) bilayer consisting of the top layer indicated by red circles

and the bottom layer indicated by blue circles. The lattice constant is a0. The bilayer shown as

solid lines in b forms the honeycomb lattice when projected on the [111] plane with the lattice

constant ã =
√

2/3a0 c. The real space coordinates are labeled by (x, y, z) in the original cubic

lattice, while it is labeled by (X,Y ) in the [111] plane. d, Level structure of TM d orbital. In

the cubic environment, d orbitals split into eg and t2g manifolds. With the SOC, t2g manifold

further splits into two levels characterized by the effective total angular momentum j = 1/2 and

3/2. With the trigonal crystal field, t2g manifold splits into two levels denoted by a1g and e′g. With

both the SOC and the trigonal field, t2g manifold splits into three levels and eg manifold splits into

two levels, i.e., all the degeneracies are lifted except the Kramers doublets. e, ABO3 monolayer is

grown on AO3 terminated AB′O3 substrate capped by AB′O3. The direction of crystal growth is

indicated by an arrow.
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t2g Orbitals - Strong SOC
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FIG. 2: Dispersion relations of the (111) bilayer. Left panels show the bulk dispersion

relations. a, t2g model in the strong SOC limit. The SOC is fixed as λ/t = 5 with ∆/t = 1 (red)

and ∆ = 0 (green). The inset shows the zoom-up near the K-point. b, t2g model in the weak

SOC limit, ∆/t = 0.5 with λ/t = 1.5 (red) and ∆/t = 1.5 with λ/t = 0 (green). c, eg model

with λ̃/t = 0.2 (red) and λ̃/t = 0 (green). The dispersions in red correspond to the topologically

nontrivial bands with the Z2 invariants shown for each band. Sum of Z2 in the occupied bands gives

the Z2 topological invariant for the corresponding filling. For example, when the lowest 5 bands

of the t2g model are occupied by electrons in a, Z2 invariant becomes 1 + 0 + 0 + 1 + 1mod 2 = 1.

Right panels show the dispersion relations in the zigzag ribbon. Parameters are the same as in the

dispersions in red in the left column. Edge modes supporting the spin current are indicated by red

lines. For the t2g model with the weak SOC, there appear 4 edge channels between the third and

the fourth bands as shown as blue lines in consistent with the Z2 number.
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j=1/2

j=3/2

Green: Without SO
Red: With SO

t22g, t
5
2g are possible candidates
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t2g Orbitals - Weak SOC
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FIG. 2: Dispersion relations of the (111) bilayer. Left panels show the bulk dispersion

relations. a, t2g model in the strong SOC limit. The SOC is fixed as λ/t = 5 with ∆/t = 1 (red)

and ∆ = 0 (green). The inset shows the zoom-up near the K-point. b, t2g model in the weak

SOC limit, ∆/t = 0.5 with λ/t = 1.5 (red) and ∆/t = 1.5 with λ/t = 0 (green). c, eg model

with λ̃/t = 0.2 (red) and λ̃/t = 0 (green). The dispersions in red correspond to the topologically

nontrivial bands with the Z2 invariants shown for each band. Sum of Z2 in the occupied bands gives

the Z2 topological invariant for the corresponding filling. For example, when the lowest 5 bands

of the t2g model are occupied by electrons in a, Z2 invariant becomes 1 + 0 + 0 + 1 + 1mod 2 = 1.

Right panels show the dispersion relations in the zigzag ribbon. Parameters are the same as in the

dispersions in red in the left column. Edge modes supporting the spin current are indicated by red

lines. For the t2g model with the weak SOC, there appear 4 edge channels between the third and

the fourth bands as shown as blue lines in consistent with the Z2 number.
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Green: Without SO
Red: With SO

are possible candidatest22g, t
4
2g, t

5
2g

j=1/2 and j=3/2 manifolds are mixed away from Gamma
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FIG. 1: Formation of the honeycomb lattice in a (111) bilayer in the cubic lattice. a,

Perovskite structure ABO3. b, A (111) bilayer consisting of the top layer indicated by red circles

and the bottom layer indicated by blue circles. The lattice constant is a0. The bilayer shown as

solid lines in b forms the honeycomb lattice when projected on the [111] plane with the lattice

constant ã =
√

2/3a0 c. The real space coordinates are labeled by (x, y, z) in the original cubic

lattice, while it is labeled by (X,Y ) in the [111] plane. d, Level structure of TM d orbital. In

the cubic environment, d orbitals split into eg and t2g manifolds. With the SOC, t2g manifold

further splits into two levels characterized by the effective total angular momentum j = 1/2 and

3/2. With the trigonal crystal field, t2g manifold splits into two levels denoted by a1g and e′g. With

both the SOC and the trigonal field, t2g manifold splits into three levels and eg manifold splits into

two levels, i.e., all the degeneracies are lifted except the Kramers doublets. e, ABO3 monolayer is

grown on AO3 terminated AB′O3 substrate capped by AB′O3. The direction of crystal growth is

indicated by an arrow.
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Vanishes in the limit of Δ→0

Similar to graphene, see Min et al, PRB 2006

Wednesday, June 22, 2011



eg Orbitals
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FIG. 2: Dispersion relations of the (111) bilayer. Left panels show the bulk dispersion

relations. a, t2g model in the strong SOC limit. The SOC is fixed as λ/t = 5 with ∆/t = 1 (red)

and ∆ = 0 (green). The inset shows the zoom-up near the K-point. b, t2g model in the weak

SOC limit, ∆/t = 0.5 with λ/t = 1.5 (red) and ∆/t = 1.5 with λ/t = 0 (green). c, eg model

with λ̃/t = 0.2 (red) and λ̃/t = 0 (green). The dispersions in red correspond to the topologically

nontrivial bands with the Z2 invariants shown for each band. Sum of Z2 in the occupied bands gives

the Z2 topological invariant for the corresponding filling. For example, when the lowest 5 bands

of the t2g model are occupied by electrons in a, Z2 invariant becomes 1 + 0 + 0 + 1 + 1mod 2 = 1.

Right panels show the dispersion relations in the zigzag ribbon. Parameters are the same as in the

dispersions in red in the left column. Edge modes supporting the spin current are indicated by red

lines. For the t2g model with the weak SOC, there appear 4 edge channels between the third and

the fourth bands as shown as blue lines in consistent with the Z2 number.
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Red: With SO
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Nearly flat Z2 band obtained if Vddδ/Vddσ~0
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Control of Topological Order

‣ Topological order can be destroyed by inversion symmetry 
breaking
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This gap is robust against inversion 
symmetry breaking, closes if the Jahn-Teller 

effect is strong 
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Materials Consideration

A=La3+, Sr2+

LaBO3 → B3+

SrBO3 → B4+ 
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FIG. 1: Formation of the honeycomb lattice in a (111) bilayer in the cubic lattice. a,

Perovskite structure ABO3. b, A (111) bilayer consisting of the top layer indicated by red circles

and the bottom layer indicated by blue circles. The lattice constant is a0. The bilayer shown as

solid lines in b forms the honeycomb lattice when projected on the [111] plane with the lattice

constant ã =
√

2/3a0 c. The real space coordinates are labeled by (x, y, z) in the original cubic

lattice, while it is labeled by (X,Y ) in the [111] plane. d, Level structure of TM d orbital. In

the cubic environment, d orbitals split into eg and t2g manifolds. With the SOC, t2g manifold

further splits into two levels characterized by the effective total angular momentum j = 1/2 and

3/2. With the trigonal crystal field, t2g manifold splits into two levels denoted by a1g and e′g. With

both the SOC and the trigonal field, t2g manifold splits into three levels and eg manifold splits into

two levels, i.e., all the degeneracies are lifted except the Kramers doublets. e, ABO3 monolayer is

grown on AO3 terminated AB′O3 substrate capped by AB′O3. The direction of crystal growth is

indicated by an arrow.
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5

TABLE SI: List of candidate materials

Configuration Bulk Superlattice

LaReO3 t42g — —
LaRuO3 t52g metallic Ref. [2] —
SrRhO3 t52g metallic Ref. [3] Ref. [4]
SrIrO3 t52g metallic Refs. [5, 6] metallic Ref. [7]
LaOsO3 t52g — —
LaAgO3 e2g metallic (band calc.) Ref. [8] —
LaAuO3 e2g Refs. [9, 10] —

Here r labels site, ε labels eg orbitals, and σ =↑, ↓ labels spins. nrεσ = d†rεσdrεσ is the electron density for orbital-ε
and spin-σ, nrε =

∑
σ nrεσ is the electron density for orbital-ε, and nr =

∑
ε nrε is the total electron density at

site-r. U is on-site intraorbital repulsion, U ′ is on-site interorbital repulsion, and V is nearest-neighbor repulsion.
Now we 1/3-fill the 8th band, and try to find out the ground state. We project the interaction HI into the 8th

band, and study the effective hamiltonian in the partially filled band (the 8th band). [11]

Heff =
∑

k

E8(k)ψ
†
kψk +

1

Nuc

∑

k1k2k3

u(k1,k2,k3)ψ
†
k1

ψ†
k2

ψk3
ψk1+k2−k3

, (S5.2)

where E8(k) is the kinectic energy of the 8th band, and the interaction u is nothing but HI projected into the 8th
band. Nuc = Nx ·Ny is the total number of unit cells. 1/Nuc is the correct normalization factor.
Heff is exact diagonalized for 4 × 6 (Nx × Ny, these are the number of unit cells along a1 and a2 directions on

honeycomb lattice) unit-cell system with periodic boundary condition, with Ne = 8 electrons. Because Heff respects
the total momentum, We can diagonalize Heff with in each center-of-mass momentum sector. In the following figure,
we show the ground state and the first excited state energies as a function of the center-of-mass momentum. We
choose U = U ′ = t, V = 0.5t. The momentum kx, ky are shown as integers. For example, (kx, ky) = (2, 3) really
means (kx, ky) = (2 · 2π/Nx, 3 · 2π/Ny).
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A three-fold degenerate ground state manifold (GSM) is observed, [12] which is separated with the other states
by a clear energy gap ∼ 0.1. These three ground states are at momentum (0, 0), (0, 2), (0, 4) which is expected. The
reason is that the different ground states can be viewed as a result of twisted boundary condition 0 → 2π. If we twist
the boundary condition along the y direction 0 → 2π, the momentum of each electron is shifted: ky → ky + 2π

6 . So
for 8 electrons, the center of mass momentum shifts ky → ky + 8 2π

6 = ky + 2π
3 . This twist will drive ground state 1

with center of mass momentum (0,0) to ground state 2 with c.o.m. k = (0, 2). And it also drives ground state 2 into
ground state 3.
To confirm that this 3-fold degenerate ground state is really a fractional quantum Hall (FQH) state instead of

states such as CDW, we computed the Chern number by twist boundary condition. The details of the method are
described in Ref. [13]. Here we discretize the boundary phase unit cell into a 10 × 10 and 20 × 20 meshes. And the
Chern numbers for the three ground states are found to be independent of which mesh to use up to the fourth digit:
C1 = 0.3344, C2 = 0.3311, C3 = 0.3344. These values slightly deviate from C = 1/3 in the thermodynamic limit,
which is expected for a small system. The sum of the three Chern numbers is found to be exactly 1. This explicitly
shows that we are in the ν = 1/3 FQH phase.

[1] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498–1524 (1954).

AB’O3: LaAlO3 and SrTiO3
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FIG. 3: Density functional theory results of the dispersion relations of the (111) bilayer

of TMOs. Symmetric bilayers: a LaReO3, b LaOsO3, c SrRhO3, d SrIrO3, e LaAgO3, and f

LaAuO3. Bilayers shown in a, b, e, and f are grown between LaAlO3, while those in cand dare

grown between SrTiO3. Asymmetric bilayers of LaAuO3 grown between LaAlO3 and LaScO3 g,

and between LaAlO3 and YAlO3 h. The Fermi level is taken to be 0 of the vertical axis. Bilayers

shown in b, d, e, f, and h are TIs with the band gap indicated, g is a trivial insulator, and others

are topological metals.
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t2g Systems

5d : t42g 5d : t52g

4d : t52g 5d : t52g

LaAlO3/LaReO3/LaAlO3 LaAlO3/LaOsO3/LaAlO3

SrTiO3/SrRhO3/SrTiO3 SrTiO3/SrIrO3/SrTiO3
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FIG. 3: Density functional theory results of the dispersion relations of the (111) bilayer

of TMOs. Symmetric bilayers: a LaReO3, b LaOsO3, c SrRhO3, d SrIrO3, e LaAgO3, and f

LaAuO3. Bilayers shown in a, b, e, and f are grown between LaAlO3, while those in cand dare

grown between SrTiO3. Asymmetric bilayers of LaAuO3 grown between LaAlO3 and LaScO3 g,

and between LaAlO3 and YAlO3 h. The Fermi level is taken to be 0 of the vertical axis. Bilayers

shown in b, d, e, f, and h are TIs with the band gap indicated, g is a trivial insulator, and others

are topological metals.
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eg Systems

4d : e2g 5d : e2g

LaAuO3 bilayer has an energy gap ~ 2000 K 

LaAlO3/LaAgO3/LaAlO3 LaAlO3/LaAuO3/LaAlO3
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Asymmetric Substrates

Trivial insulator Topological insulator
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FIG. 3: Density functional theory results of the dispersion relations of the (111) bilayer

of TMOs. Symmetric bilayers: a LaReO3, b LaOsO3, c SrRhO3, d SrIrO3, e LaAgO3, and f

LaAuO3. Bilayers shown in a, b, e, and f are grown between LaAlO3, while those in cand dare

grown between SrTiO3. Asymmetric bilayers of LaAuO3 grown between LaAlO3 and LaScO3 g,

and between LaAlO3 and YAlO3 h. The Fermi level is taken to be 0 of the vertical axis. Bilayers

shown in b, d, e, f, and h are TIs with the band gap indicated, g is a trivial insulator, and others

are topological metals.
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Physics inside Flat Z2 
Bands
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FIG. 2: Dispersion relations of the (111) bilayer. Left panels show the bulk dispersion

relations. a, t2g model in the strong SOC limit. The SOC is fixed as λ/t = 5 with ∆/t = 1 (red)

and ∆ = 0 (green). The inset shows the zoom-up near the K-point. b, t2g model in the weak

SOC limit, ∆/t = 0.5 with λ/t = 1.5 (red) and ∆/t = 1.5 with λ/t = 0 (green). c, eg model

with λ̃/t = 0.2 (red) and λ̃/t = 0 (green). The dispersions in red correspond to the topologically

nontrivial bands with the Z2 invariants shown for each band. Sum of Z2 in the occupied bands gives

the Z2 topological invariant for the corresponding filling. For example, when the lowest 5 bands

of the t2g model are occupied by electrons in a, Z2 invariant becomes 1 + 0 + 0 + 1 + 1mod 2 = 1.

Right panels show the dispersion relations in the zigzag ribbon. Parameters are the same as in the

dispersions in red in the left column. Edge modes supporting the spin current are indicated by red

lines. For the t2g model with the weak SOC, there appear 4 edge channels between the third and

the fourth bands as shown as blue lines in consistent with the Z2 number.
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Integer Quantum Hall Effect
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FIG. 4: Bulk dispersion relations of the (111) bilayer of eg model with the small Zeeman

splitting B = 0.3t (left) and the large Zeeman splitting B = 2t (right). Here we used

λ̃ = 0.5t. Bands with the majority (minority) spin component are indicated as red (blue) lines.

Band dependent Chern number is also indicated.

16

‣ External: Ferromagnetic or G-type antiferromagnetic substrate

‣ Internal: Stoner instability (U/Bandwidth>>1)

How to break time-reversal symmetry?

Large hSmall h

Mean field Hamiltonian H = Heg + �h · �σ

e0.5g , e3.5g e1g
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Fractional Quantum Hall Effect

U: Onsite intra-orbital repulsion
U’: On-site inter-orbital repulsion

V: Nearest-neighbor repulsion

H = Heg + hσz +HI

U = U � = t, V = 0.5t

HI = U

�

i,α

niα↑niα↓ + U
�
�

i,α>β

niαniβ + V�ij�ninj

What is the Hall conductance for a 1/3 filled nearly flat band
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‣ 3-fold degenerate GS

‣ Chern number 

Fractional Quantum Hall Effect

5

TABLE SI: List of candidate materials

Configuration Bulk Superlattice

LaReO3 t42g — —
LaRuO3 t52g metallic Ref. [2] —
SrRhO3 t52g metallic Ref. [3] Ref. [4]
SrIrO3 t52g metallic Refs. [5, 6] metallic Ref. [7]
LaOsO3 t52g — —
LaAgO3 e2g metallic (band calc.) Ref. [8] —
LaAuO3 e2g Refs. [9, 10] —

Here r labels site, ε labels eg orbitals, and σ =↑, ↓ labels spins. nrεσ = d†rεσdrεσ is the electron density for orbital-ε
and spin-σ, nrε =

∑
σ nrεσ is the electron density for orbital-ε, and nr =

∑
ε nrε is the total electron density at

site-r. U is on-site intraorbital repulsion, U ′ is on-site interorbital repulsion, and V is nearest-neighbor repulsion.
Now we 1/3-fill the 8th band, and try to find out the ground state. We project the interaction HI into the 8th

band, and study the effective hamiltonian in the partially filled band (the 8th band). [11]

Heff =
∑

k

E8(k)ψ
†
kψk +

1

Nuc

∑

k1k2k3

u(k1,k2,k3)ψ
†
k1

ψ†
k2

ψk3
ψk1+k2−k3

, (S5.2)

where E8(k) is the kinectic energy of the 8th band, and the interaction u is nothing but HI projected into the 8th
band. Nuc = Nx ·Ny is the total number of unit cells. 1/Nuc is the correct normalization factor.
Heff is exact diagonalized for 4 × 6 (Nx × Ny, these are the number of unit cells along a1 and a2 directions on

honeycomb lattice) unit-cell system with periodic boundary condition, with Ne = 8 electrons. Because Heff respects
the total momentum, We can diagonalize Heff with in each center-of-mass momentum sector. In the following figure,
we show the ground state and the first excited state energies as a function of the center-of-mass momentum. We
choose U = U ′ = t, V = 0.5t. The momentum kx, ky are shown as integers. For example, (kx, ky) = (2, 3) really
means (kx, ky) = (2 · 2π/Nx, 3 · 2π/Ny).
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A three-fold degenerate ground state manifold (GSM) is observed, [12] which is separated with the other states
by a clear energy gap ∼ 0.1. These three ground states are at momentum (0, 0), (0, 2), (0, 4) which is expected. The
reason is that the different ground states can be viewed as a result of twisted boundary condition 0 → 2π. If we twist
the boundary condition along the y direction 0 → 2π, the momentum of each electron is shifted: ky → ky + 2π

6 . So
for 8 electrons, the center of mass momentum shifts ky → ky + 8 2π

6 = ky + 2π
3 . This twist will drive ground state 1

with center of mass momentum (0,0) to ground state 2 with c.o.m. k = (0, 2). And it also drives ground state 2 into
ground state 3.
To confirm that this 3-fold degenerate ground state is really a fractional quantum Hall (FQH) state instead of

states such as CDW, we computed the Chern number by twist boundary condition. The details of the method are
described in Ref. [13]. Here we discretize the boundary phase unit cell into a 10 × 10 and 20 × 20 meshes. And the
Chern numbers for the three ground states are found to be independent of which mesh to use up to the fourth digit:
C1 = 0.3344, C2 = 0.3311, C3 = 0.3344. These values slightly deviate from C = 1/3 in the thermodynamic limit,
which is expected for a small system. The sum of the three Chern numbers is found to be exactly 1. This explicitly
shows that we are in the ν = 1/3 FQH phase.

[1] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498–1524 (1954).

Other proposals, see Tang et al PRL; Neupert et al PRL; Sun et al PRL, 2011
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What is Next?

‣ Competition between Jahn-Teller effect and TI phase

‣ Detailed adjustment of the band dispersion

‣ Complete phase diagram (multi-orbital Kane-Mele-Hubbard model)

‣ Identification of materials suitable for IQHE and FQHE

‣ The nature of the FQHE state in the absence of LL

Actually grow the sample

LaAuO3

Wednesday, June 22, 2011



Summary

‣ Heterostructures of transition metal oxides provide an exciting 
platform for topological electronics

‣ Lots of perovskite (111)-bilayers are possible candidates for 
topological insulators. In particular, LaAuO3 has a band gap ~ 
200meV

‣ Lots of possibilities for realizing novel quantum phases, such as 
IQHE and FQHE

‣ Lots to be done...

Manuscript can be found on arXiv
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